Practical
Software Supply Chain Security

Mike Vainio

Family stats:

2 kids
4 cats
1 wife

%

Current State of Software
Supply Chain Security

Software Supply Chain

Traditional

supply
chain

w =08 =@ ~H-G

source/ build systems/ network application deployed
dependencies engineers repository systems

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

Supply chain attacks are becoming more common

FIGURE 1.7. NEXT GENERATION SOFTWARE SUPPLY CHAIN ATTACKS (2019-2023)

250,000

200,000

245,000

100,000

Total

Malicious packages
discovered, 2x all previous
50,000 years combined

0
2019 2020 2021 2022 2023

Date
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand

https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand

Threats all over the place

SOURCE THREATS BUILD THREATS

4 46 684 80

Producer > Source Build > Package > Consumer

Dependencies

DEPENDENCY THREATS

SOURCE THREATS DEPENDENCY THREATS BUILD THREATS

A Submit unauthorized change D Use compromised dependency E Compromise build process

B Compromise source repo

C Build from modified source

F Upload modified package
G Compromise package registry

H Use compromised package

https://slsa.dev/spec/v1.0/threats-overview

Threats #2

Integrity threat

Submit
unauthorized
change (to
source repo)

Compromise
source repo

Build from
modified source
(not matching
source repo)

Known example

SushiSwap: Contractor with
repository access pushed a
malicious commit redirecting

cryptocurrency to themself.

PHP: Attacker compromised
PHP's self-hosted git server
and injected two malicious
commits.

Webmin: Attacker modified
the build infrastructure to use
source files not matching
source control.

How SLSA can help

Two-person review could have
caught the unauthorized
change.

A better-protected source
code platform would have
been a much harder target for
the attackers.

A SLSA-compliant build server
would have produced
provenance identifying the
actual sources used, allowing
consumers to detect such
tampering.

Use
compromised
dependency (i.e.
A-H, recursively)

Compromise
build process

Upload modified
package (not
matching build
process)

event-stream: Attacker
added an innocuous
dependency and then later
updated the dependency to
add malicious behavior. The
update did not match the
code submitted to GitHub
(i.e. attack F).

SolarWinds: Attacker
compromised the build
platform and installed an
implant that injected
malicious behavior during
each build.

CodeCov: Attacker used
leaked credentials to upload
a malicious artifact to a GCS
bucket, from which users
download directly.

Applying SLSA recursively to all
dependencies would have
prevented this particular
vector, because the
provenance would have
indicated that it either wasn't
built from a proper builder or
that the source did not come
from GitHub.

Higher SLSA levels require
stronger security controls for
the build platform, making it
more difficult to compromise
and gain persistence.

Provenance of the artifact in
the GCS bucket would have
shown that the artifact was not
built in the expected manner
from the expected source
repo.

https://slsa.dev/spec/v1.0/threats-overview

Software Bill of Materials

SBOM can help us understand what goes into an artifact

What’s an SBOM?

[mike@linukka ~]$ syft nginx:alpine
v Loaded image
v Parsed image

+v Cataloged packages [66 packages]
NAME VERSION TYPE
alpine-baselayout 3.4.3-r1 apk
alpine-baselayout-data 3.4.3-r1 apk
alpine-keys 2.4-r1 apk
aom-1ibs 3.6.1-r@ apk
apk-tools 2.14.0-r2 apk
brotli-libs 1.0.9-r14 apk
busybox 1.36.1-r2 apk
busybox-binsh 1.36.1-r2 apk
ca-certificates 20230506-r0 apk

[mike@linukka verinotes]$ syft packages file:go.mod
v Indexed file system

v Cataloged packages [29 packages]

“spdxVersion": "SPDX-2.3",
"datalLicense": "CC0-1.0",
"'SPDXID": "SPDXRef-DOCUMENT",
"name": "go.mod",
"document e": “https://anchore.com/syft/file/go.mod-f518a5fa-36fc-4f90-996d-eclade3b7c14",
“creationInfo": {
"licenseListVersion": "3.21",
“creators": [
"0Organization: Anchore, Inc",
“Tool: syft-0.86.1"
1,
"created": "2023-11-20T12:39:122"
5
“packages": [
{
“name": “ariga.io/atlas",
"'SPDXID": "SPDXRef-Package-go-module-ariga.io-atlas-4ba436b91a46da78",
"versionInfo": "v@.9.1-0.20230119145809-92243f7c55¢ch",
"downloadLocation": "NOASSERTION",
"filesAnalyzed": false,
“sourceInfo": "acquired package info from go module information: /go.mod",
"licenseConcluded": "NOASSERTION",
"licenseDeclared": "NOASSERTION",
"copyrightText": "NOASSERTION",

“externalRefs": [
{
"referenceCategory": "PACKAGE-MANAGER",
"referenceType": "purl",
"referenceLocator": "pkg:golang/ariga.io/atlas@v@.9.1-0.20230119145809-92243f7c55cb"
}

1

NAME VERSION TYPE

ariga.io/atlas v0.9.1-0.20230119145809-92243f7c55cb go-module
entgo.io/ent ve.11.8 go-module
github.com/agext/levenshtein vi.2.1 go-module
github.com/apparentlymart/go-textseg/vli3 v13.0.0 go-module
github.com/davecgh/go-spew vi.1l.1 go-module
github.com/go-chi/chi/v5 v5.0.8 go-module
github.com/go-chi/httplog v0.2.5 go-module

Supply-chain Levels for
Software Artifacts

SLSA is a framework for software supply chain security

SLSA is not just about providing this metadata, it's also
about treating your build system as a production system

SLSA helps to trace an artifact back to it's source

SLSA v1.0 - Build Track

SOURCE THREATS BUILD THREATS

o ol ol Bl ol

{

Producer > Source Build > Package > Consumer

Dependencies

DEPENDENCY THREATS

BUILD THREATS

E Compromise build process

F Upload modified package

G Compromise package registry

H Use compromised package

https://slsa.dev/spec/v1.0/threats-overview

SLSA Security Levels (for Build track)

Track/Level Requirements Focus

Build LO (none) (n/a)

Build L1 Provenance showing how the package was built Mistakes, documentation
Build L2 Signed provenance, generated by a hosted build platform Tampering after the build

Build L3 Hardened build platform Tampering during the build

SLSA Provenance

Provenance according to Google search:

place of origin or earliest known history of something

SLSA provenance (according to SLSA.dev):

verifiable information about software artifacts describing where, when and
how somethino

SLSA Provenance

v "builder":
"id": "https://github.com/slsa~framework/slsa-github-generator/.github/workflows/

I
"buildType": "https://github.com/slsa-framework/slsa-github-generator/container@vl"

"invocation":

v v "configSource":

fe@nymgsv J — | i "uri": "git+https://github.com/verifa/verinotes@refs/tags/ve.2.0",
Dependencies "digest": {
"shal": "d0ad495e16d32¢c2bb125bf14811f747e711714199b"
8
"entryPoint": ".github/workflows/release.yaml"
External Parameters % '
. o9 Build Process Outputs "parameters": S
e (subject) = " s ",
o v environment":
Internal Parameters = EE e -
github_ref": "refs/tags/ve.2.0",

"github_ref_type": "tag",

"github_repository_id": "6@3037671",
"github_repository_owner": "verifa",

"github_shal": "d@a495e16d32c2bb125bf14811747e711714199b"

identifies

Build Type

ST jals": [
Build Platform (builder) matertals eyl

"uri": "git+https://github.com/verifa/verinotes@refs/tags/v0.2.0",
v "digest": {

Sou rce: . “shal": '"dPa495e16d32c2bb125bf1481f747e711714199b"
https://slsa.dev/spec/v1.0/provenance

https://slsa.dev/spec/v1.0/provenance

How many here generate SBOMs?

How many here generate SLSA provenance?

Source: https: . e.com/state-of-the-software-supply-chain/software-su

12% 29%

of leaders reported generating SBOMs of engineering professionals reported
for their applications generating SBOMs for their applications

https://www.sonatype.com/state-of-the-software-supply-chain/software-supply-chain-maturity

Sigstore

sigstore

The Sigstore framework and tooling empowers software
developers and consumers to securely sign and verify
software artifacts

Main components:
- cosign CLI
- Rekor transparency log
- Fulcio code signing Certificate

The project is backed by the Open Source Security Authority.

Foundation (OpenSSF) under the Linux Foundation

https://www.sigstore.dev/how-it-works

Let’s build!

Pipeline Overview

[Bu?ld and Pusln imo«jw

7

ou‘tpu‘t:

L y[registry]

2 ?mage: 3Incr.?o/ so»«e/ imo«je_

diges‘t: shad56:432as.....

sign the
imo;ge

attach W

A

S?gno\'tur‘ej

P

3e_ne,ro:te_
SL)OM

attach
Sbom

_p| generate attach
pMVe_nomce, ProVe,noer_

Inside the Registry
[registry]

"Co\f,s for mage:

v1.0.1
é sha 56 :(haSln).sig
sha256:{hashd.att

Pipeline - Build and Push

Release workflow

"ghcr.io/${{ github.repository}}"

ubuntu-latest

read
T write

${{ steps.build.outputs.image }}
${{ steps.build.outputs.digest }}

checkout repo

: actions/setup-go@fac708d6674e3@0b6bad1289acaab6d4b75aa@753
: ko-build/setup-ko@aced48d793556083a76T1e3e6068850c1f4a369aa

ame: Build and push with ko
: build

Build & push the image. Save the image name & digest
image_and_digest=$(ko build --tags="${tag}" --bare --sbom=none .)

Output the image name and digest so we can generate provenance.
digest=$(echo "${image_and_digest}" | cut -d'@' -f2)

echo "digest=$digest" >> "$GITHUB_OUTPUT"
echo "image=$K0_DOCKER_REPO" >> "$GITHUB_OUTPUT"

Pipeline - Sign Image

ubuntu-latest
[build]

: write
: write

${{ needs.build.outputs.image }}
${{ needs.build.outputs.digest }}
Install cosign
Login to ghcr.io

: Sign image

cosiqn sign "${image}@${digest}" ——yes

Pipeline - Attach SBOM

;—on: ubuntu-latest
eds: [build]

S: write
n: write

: ${{ needs.build.outputs.image }}
: ${{ needs.build.outputs.digest }}

checkout repo
Install cosign
Install Syft
Login to ghcr.io

name: Attach SBOM to image
T H
syft pulls the image and analyses the contents to generate an SBOM
syft "${image}@${digest}" ——output spdx—json ——file sbom.spdx.json
cosign attest ——predicate sbom-final.spdx.json ——type spdxjson "${image}@${digest}" --yes

Pipeline - Generate & Attach SLSA Provenance

- [bu11d]

: read
T write

) jJes: write
: startsWith(github.ref, 'refs/tags/')
: slsa-framework/slsa—-github—generator/.github/workflows/generator_ contalner slsa3.yml@vl.9.0

: ${{ needs.build.outputs.image }}

t: ${{ needs.build.outputs.digest }}
' : ${{ github.actor }}

: ${{ secrets.GITHUB_TOKEN }}

Open-source vs Private

Achieving SLSA (even Level 3) is fairly easy today for open-source projects, if you use the public sigstore
instance and GitHub.

For private/proprietary projects, it's hard as you have to setup a code signing infrastructure. (also, how
will consumers access it for verification?)

Signing

Sigstore

FIND/DOWNLOQAD
ARTIFACTS

PUBLISH SIGNED
ARTIFACT

SIGNED ARTIFACT

AUTHENTICATE
WITH OPEN ID

CONNECT

03
3

A4 W
FULCIO P H CHECK
DEVELOPERS REQUESY CERTIFICATE ;FGL:«S:NSS RERENS SIGNATURES END USERS
CERTIFICATE TRANSPARENCY LOG

AUTHORITY CERTIFICATE INLOG

o3
W
PROVIDES CHECK THAT
SIGNING MONITORS TRUST ROOT SIGNING PARTY IS
CERTIFICATE IN TRUST ROOT

https://www.sigstore.dev/how-it-works

Verifications

e Image Signature
e SBOM
e SLSA Provenance

Verifying

Verifying the Image with
Nerdctl / Finch

finch run -it \
--verify=cosign \
--cosign-certificate-identity=https://github.com/chainguard-images/images/.github/workflows/release.yaml@refs/heads/main \
--cosign-certificate-oidc-issuer=https://token.actions.githubusercontent.com \

cgr.dev/chainguard/busybox /bin/sh

Verifying and downloading
the SBOM (+grype)

cosign verify-attestation ghcr.io/verifa/verinotes:v0.2.0 \
ertificate-identity-regexp '~https://github.com/verifa/verinotes/.github/workflows/.*.yaml@refs/tags/vO.x.x"' \

fe-01 1€ https://token.actions.githubusercontent.com \
spdxjson- | jq '.payload | @base6dd' -r | jq '.predicate' | grype

-——type spdxjson | jq '.payload | @base64d' -r | jq '.predicate' | grype -v
[0000] INFO grype version: 0.64.1
[0000] INFO new version of grype is available: ©.73.3 (currently running: 0.64.1)
[0000] INFO downloading new vulnerability DB

Verification for ghcr.io/verifa/verinotes:v@.2.0 —
The following checks were performed on each of these signatures:
- The cosign claims were validated
- Existence of the claims in the transparency log was verified offline
- The code-signing certificate was verified using trusted certificate authority certificates
Certificate subject: https: //github com/verifa/verinotes/.github/workflows/release.yaml@refs/tags/v0.2.0
Certificate issuer URL:
GitHub Workflow Trigger: push
GitHub Workflow SHA: d@a495e16d32c2bb125bf14811747e711714199b
GitHub Workflow Name: Release workflow
GitHub Workflow Repository: verifa/verinotes
GitHub Workflow Ref: refs/tags/ve.2.0
[0001] WARN some package(s) are missing CPEs. This may result in missing vulnerabilities. You may autogenerate these using: -—add-cpes-if-none
[0010] INFO updated vulnerability DB from version=5 built="2023-08-16 01:26:37 +0000 UTC" to version=5 built="2023-11-21 ©1:29:05 +0000 UTC"
[0010] INFO found 9 vulnerabilities for 300 packages

NAME INSTALLED FIXED-IN TYPE VULNERABILITY SEVERITY
@sveltejs/kit 1.6.0 1.15.1 npm GHSA-5p75-vc5g-8rv2 High
@sveltejs/kit 1.6.0 1.15.2 npm GHSA-gv7g-x59x-wf8f High
postcss 8.4.21 8.4.31 npm GHSA-7fh5-64p2-3v2j Medium
semver 7.3.8 7.5.2 npm GHSA-c2qf-rxjj-qqgw Medium
undici 5.18.0 5.19.1 npm GHSA-5r9g-gh6m-jxff Medium
undici 5.18.0 5.19.1 npm GHSA-réch-mqf9-qc9w High
undici 5.18.0 5.26.2 npm GHSA-wqq4-5wpv-mx2g Low

vite 4.1.1 4.1.5 npm GHSA-353f-5xf4-qw67 High
word-wrap 1.2.3 1.2.4 npm GHSA-j8xg-fqg3-53r7 Medium

Verifying SLSA provenance

cosign verify-attestation \
ype slsaprovenance \

r

issuer https://token.actions.githubusercontent.com \

111Cd i1gentlity

policy policy.cue \
ghcr.io/verifa/verinotes:v0.2.0 | jq '.payload | @base64d'

1eXD
Ay

'“https://github.com/slsa~framework/slsa-github-generator/.github/workflows/generator_container_slsa3.yml

| Jq '.predicate'’

File: policy.cue

// The predicateType field must match this string
predicateType: "https://slsa.dev/provenance/ve.2"

predicate: {
// This condition verifies that the builder is the builder we
// expect and trust. The following condition can be used
// unmodified. It verifies that the builder is the container
// workflow.
builder: {
id: =~"~https://github.com/slsa-framework/slsa—-github—generator/.github/workflows/gener
}
invocation: {
configSource: {
// This condition verifies the entrypoint of the workflow.
// Replace with the relative path to your workflow in your
// repository.
entryPoint: ".github/workflows/release.yaml"

// This condition verifies that the image was generated from

// the source repository we expect. Replace this with your

// repository.

uri: =~"~git\\+https://github.com/verifa/verinotes@refs/tags/v(0-9]+.[0-9]+.[0-9]+$"

cosign verify-attestation \
—type slsaprovenance \
——certificate-oidc-issuer https://token.actions.githubusercontent.com \
—certificate-identity-regexp '~https://github.com/slsa-framework/slsa-github-generator/.github/workflows/generator_container_slsa3.yml@refs
—policy policy.cue \
ghcr.io/verifa/verinotes:v0.2.0 | jq '.payload | @base64d' -r | jq '.predicate’
will be validating against CUE policies: [policy.cuel

Verification for ghcr.io/verifa/verinotes:ve@.2.0 —
The following checks were performed on each of these signatures:
- The cosign claims were validated
- Existence of the claims in the transparency log was verified offline
- The code-signing certificate was verified using trusted certificate authority certificates
Certificate subject: https://github.com/slsa-framework/slsa-github-generator/.github/workflows/generator_container_slsa3.yml@refs/tags/v1.9.0
Certificate issuer URL: https://token.actions.githubusercontent.com
GitHub Workflow Trigger: push
GitHub Workflow SHA: d@ad495e16d32c2bb125bf14811747e711714199b
GitHub Workflow Name: Release workflow
GitHub Workflow Repository: verifa/verinotes
GitHub Workflow Ref: refs/tags/ve@.2.0
{
: {
¢ "https://github.com/slsa-framework/slsa-github-generator/.github/workflows/generator_container_slsa3.yml@refs/tags/v1.9.0"
},
¢ "https://github.com/slsa-framework/slsa-github-generator/container@vl”,
: {
: {
¢ "git+https://github.com/verifa/verinotes@refs/tags/ve.2.e",
: {
¢ "d@ad495e16d32c2bb125b714811747e711714199b"

h
h

: ".github/workflows/release.yaml"

: {},
: {

¢ "mvainio-verifa",

There is also an official
slsa-verifier

Kyverno / Policy Controller

Isn’t there an easier way?

GitHub

(® Actions [Projects [0 wiki () Security 10 |~ Insights 3 Settings

Dependency graph

GOOD NEWS!
|

Q_ search all dependencies

@sveltejs/kit 1.6.0 © 2 high ~

Detected automatically on Aug 02, 2023 (npm) - ui/package-lock.json - MIT

Platforms and open-source
ecosystems are coming up with
native integrations Provenance

Built and signed on Source Commit github.com/prisma/prisma@bfe7bf8

npm

() GitHub Actions Build File .github/workflows/release-latest.yml

View build summary Public Ledger Transparency log entry

| created this metadataq,
now what?

JCL

Know your software
supply chain

GUAC

Proactive Preventive Reactive
How f'° 'hp'fe"e“t large _“a'f Have | taken the right HOW AM | AFFECTED???
supply chain compromises? safeguards?

A vulnerability or supply
gttt When deciding to use and chain compromise is
TR deploy software, are discovered!

there sufficient security
checks and approvals?
' tm
Which N Lg “
projects ‘j SLSA She
are
these? TN .
) v
L 1 trivy grype

https://xkcd.com/2347/

Check it out: https://github.com/quacsec/quac

https://github.com/guacsec/guac

Public Record

.

GitHub

Open Source
Vulnerabilities

@SV

Org. (Private)
Azure Blob
Storage
* Google Cloud Storage

Amazon S3
Vendors
e
R0
trivy grype

a

SLSA, SBOM,
0SV, VEX, etc.

a

SLSA, SBOM,
Internal certification,
etc.

a

Vuln certifications,
0OSV, VEX, etc. _/

Extract
information and
relationships

Ingest/

Process

@ GraphQL

Graph contains:
- Artifacts/identifiers
- Attestations
- ldentities
- Relationships (edges)

CIsO
Inventory
Policy
CMDB

Further reading

What is in-toto and how it relates to SLSA?

OpenPubKey vs sigstore (note: by sigstore
maintainer):

OpenVEX (& VEX in general):

Homebrew core going for SLSA Build level 2:

CRI-O support for verifying image signatures:

OpenSSF blog/github etc.

https://slsa.dev/blog/2023/05/in-toto-and-slsa
https://blog.sigstore.dev/openpubkey-and-sigstore/
https://github.com/openvex
https://blog.trailofbits.com/2023/11/06/adding-build-provenance-to-homebrew/
https://blog.trailofbits.com/2023/11/06/adding-build-provenance-to-homebrew/
https://kubernetes.io/blog/2023/06/29/container-image-signature-verification/
https://kubernetes.io/blog/2023/06/29/container-image-signature-verification/
https://openssf.org/blog/

